Introduction
Background
Angina pectoris is the result of myocardial ischemia caused by an imbalance between myocardial blood supply and oxygen demand. Angina is a common presenting symptom (typically, chest pain) among patients with coronary artery disease. A comprehensive approach to diagnosis and to medical management of angina pectoris is an integral part of the daily responsibilities of health care professionals.
Pathophysiology
Myocardial ischemia develops when coronary blood flow becomes inadequate to meet myocardial oxygen demand. This causes myocardial cells to switch from aerobic to anaerobic metabolism, with a progressive impairment of metabolic, mechanical, and electrical functions. Angina pectoris is the most common clinical manifestation of myocardial ischemia. It is caused by chemical and mechanical stimulation of sensory afferent nerve endings in the coronary vessels and myocardium. These nerve fibers extend from the first to fourth thoracic spinal nerves, ascending via the spinal cord to the thalamus, and from there to the cerebral cortex.
Studies have shown that adenosine may be the main chemical mediator of anginal pain. During ischemia, ATP is degraded to adenosine, which, after diffusion to the extracellular space, causes arteriolar dilation and anginal pain. Adenosine induces angina mainly by stimulating the A1 receptors in cardiac afferent nerve endings.1
Heart rate, myocardial inotropic state, and myocardial wall tension are the major determinants of myocardial metabolic activity and myocardial oxygen demand. Increases in the heart rate and myocardial contractile state result in increased myocardial oxygen demand. Increases in both afterload (ie, aortic pressure) and preload (ie, ventricular end-diastolic volume) result in a proportional elevation of myocardial wall tension and, therefore, increased myocardial oxygen demand. Oxygen supply to any organ system is determined by blood flow and oxygen extraction. Because the resting coronary venous oxygen saturation is already at a relatively low level (approximately 30%), the myocardium has a limited ability to increase its oxygen extraction during episodes of increased demand. Thus, an increase in myocardial oxygen demand (eg, during exercise) must be met by a proportional increase in coronary blood flow.
The ability of the coronary arteries to increase blood flow in response to increased cardiac metabolic demand is referred to as coronary flow reserve (CFR). In healthy people, the maximal coronary blood flow after full dilation of the coronary arteries is roughly 4-6 times the resting coronary blood flow. CFR depends on at least 3 factors: large and small coronary artery resistance, extravascular (ie, myocardial and interstitial) resistance, and blood composition.
Myocardial ischemia can result from (1) a reduction of coronary blood flow caused by fixed and/or dynamic epicardial coronary artery (ie, conductive vessel) stenosis, (2) abnormal constriction or deficient relaxation of coronary microcirculation (ie, resistance vessels), or (3) reduced oxygen-carrying capacity of the blood.
Atherosclerosis is the most common cause of epicardial coronary artery stenosis and, hence, angina pectoris. Patients with a fixed coronary atherosclerotic lesion of at least 50% show myocardial ischemia during increased myocardial metabolic demand as the result of a significant reduction in CFR. These patients are not able to increase their coronary blood flow during stress to match the increased myocardial metabolic demand, thus they experience angina. Fixed atherosclerotic lesions of at least 90% almost completely abolish the flow reserve; patients with these lesions may experience angina at rest.
Coronary spasm can also reduce CFR significantly by causing dynamic stenosis of coronary arteries. Prinzmetal angina is defined as resting angina associated with ST-segment elevation caused by focal coronary artery spasm. Although most patients with Prinzmetal angina have underlying fixed coronary lesions, some have angiographically normal coronary arteries. Several mechanisms have been proposed for Prinzmetal angina: focal deficiency of nitric oxide production,2 hyperinsulinemia, low intracellular magnesium levels, smoking cigarettes, and using cocaine.
Approximately 30% of patients with chest pain referred for cardiac catheterization have normal or minimal atherosclerosis of coronary arteries. A subset of these patients demonstrates reduced CFR that is believed to be caused by functional and structural alterations of small coronary arteries and arterioles (ie, resistance vessels). Under normal conditions, resistance vessels are responsible for as much as 95% of coronary artery resistance, with the remaining 5% being from epicardial coronary arteries (ie, conductive vessels). The former is not visualized during regular coronary catheterization. Angina due to dysfunction of small coronary arteries and arterioles is called microvascular angina. Several diseases, such as diabetes mellitus, hypertension, and systemic collagen vascular diseases (eg, systemic lupus erythematosus, polyarteritis nodosa), are believed to cause microvascular abnormalities with subsequent reduction in CFR.
The syndrome that includes angina pectoris, ischemialike ST-segment changes and/or myocardial perfusion defects during stress testing, and angiographically normal coronary arteries is referred to as syndrome X. Most patients with this syndrome are postmenopausal women, and they usually have an excellent prognosis.3 Syndrome X is believed to be caused by microvascular angina. Multiple mechanisms may be responsible for this syndrome, including (1) impaired endothelial dysfunction,4 (2) increased release of local vasoconstrictors, (3) fibrosis and medial hypertrophy of the microcirculation, (4) abnormal cardiac adrenergic nerve function, and/or (5) estrogen deficiency.5
A number of extravascular forces produced by contraction of adjacent myocardium and intraventricular pressures can influence coronary microcirculation resistance and thus reduce CFR. Extravascular compressive forces are highest in the subendocardium and decrease toward the subepicardium. Left ventricular (LV) hypertrophy together with a higher myocardial oxygen demand (eg, during tachycardia) cause greater susceptibility to ischemia in subendocardial layers.
Myocardial ischemia can also be the result of factors affecting blood composition, such as reduced oxygen-carrying capacity of blood, as is observed with severe anemia (hemoglobin, <8 g/dL), or elevated levels of carboxyhemoglobin. The latter may be the result of inhalation of carbon monoxide in a closed area or of long-term smoking.
Ambulatory ECG monitoring has shown that silent ischemia is a common phenomenon among patients with established coronary artery disease. In one study, as many as 75% of episodes of ischemia (defined as transient ST depression of >1 mm persisting for at least 1 min) occurring in patients with stable angina were clinically silent. Silent ischemia occurs most frequently in early morning hours and may result in transient myocardial contractile dysfunction (ie, stunning). The exact mechanism(s) for silent ischemia is not known. However, autonomic dysfunction (especially in patients with diabetes), a higher pain threshold in some individuals, and the production of excessive quantities of endorphins are among the more popular hypotheses.6
Frequency
United States
Approximately 9.8 million Americans are estimated to experience angina annually, with 500,000 new cases of angina occurring every year. In 2009, an estimated 785 000 Americans will have a new coronary attack, and about 470 000 will have a recurrent attack. Only 18% of coronary attacks are preceded by angina. An additional 195,000 silent first myocardial infarctions are estimated to occur each year.7
Mortality/Morbidity
About every 25 seconds, an American will have a coronary event, and about every minute someone will die from one. Coronary heart disease (CHD) caused about 1 of every 5 deaths in the United States in 2005. Final 2005 coronary heart disease mortality in 2005 was 445,687 (232,115 males and 213,572 females). On the basis of 2005 mortality rate data, nearly 2,400 Americans die of cardiovascular disease (CVD) each day—an average of 1 death every 37 seconds. The 2006 overall preliminary death rate from cardiovascular disease was 262.9.7
Race
The annual rates per 1000 population of new episodes of angina are as follows:7
Age 45-54 years
8.5 for nonblack men
10.6 for nonblack women
11.8 for black men
20.8 for black women
Age 55-64 years
11.9 for nonblack men
11.2 for nonblack women
10.6 for black men
19.3 for black women
Age 65-74 years
13.7 for nonblack men
13.1 for nonblack women
8.8 for black men
10.0 for black women
Sex
Angina pectoris is more often the presenting symptom of coronary artery disease in women than in men, with a female-to-male ratio of 1.7:1. It has an estimated prevalence of 4.6 million in women and 3.3 million in men. In one analysis, this female excess was found across countries and was particularly high in the American studies and higher among nonwhite ethnic groups than among whites.8 The frequency of atypical presentations is also more common among women compared with men. Women have a slightly higher rate of mortality from coronary artery disease compared with men, in part because of an older age at presentation and a frequent lack of classic anginal symptoms. The estimated age-adjusted prevalence of angina is greater in women than in men.
Age
The prevalence of angina pectoris increases with age. Age is a strong independent risk factor for mortality. More than 150,000 Americans killed by CVD in 2005 were younger than 65 years. However, in 2005, 32% of deaths from cardiovascular disease occurred before the age of 75 years, which is well before the average life expectancy of 77.9 years.7
Clinical
History
Most patients with angina pectoris report of retrosternal chest discomfort rather than frank pain. The former is usually described as a pressure, heaviness, squeezing, burning, or choking sensation. Anginal pain may be localized primarily in the epigastrium, back, neck, jaw, or shoulders. Typical locations for radiation of pain are arms, shoulders, and neck. Typically, angina is precipitated by exertion, eating, exposure to cold, or emotional stress. It lasts for approximately 1-5 minutes and is relieved by rest or nitroglycerin. Chest pain lasting only a few seconds is not usually angina pectoris. The intensity of angina does not change with respiration, cough, or change in position. Pain above the mandible and below the epigastrium is rarely anginal in nature.
Ask patients about the frequency of angina, severity of pain, and number of nitroglycerin pills used during angina episodes.
Angina decubitus is a variant of angina pectoris that occurs at night while the patient is recumbent. Some have suggested that it is induced by an increase in myocardial oxygen demand caused by expansion of the blood volume with increased venous return during recumbency.
Physical
For most patients with stable angina, physical examination findings are normal. Diagnosing secondary causes of angina, such as aortic stenosis, is important.
A positive Levine sign (characterized by the patient's fist clenched over the sternum when describing the discomfort) is suggestive of angina pectoris.
Look for physical signs of abnormal lipid metabolism (eg, xanthelasma, xanthoma) or of diffuse atherosclerosis (eg, absence or diminished peripheral pulses, increased light reflexes or arteriovenous nicking upon ophthalmic examination, carotid bruit).
Examination of patients during the angina attack may be more helpful. Useful physical findings include third and/or fourth heart sounds due to LV systolic and/or diastolic dysfunction and mitral regurgitation secondary to papillary muscle dysfunction.
Pain produced by chest wall pressure is usually of chest wall origin.
Causes
Decrease in myocardial blood supply due to increased coronary resistance in large and small coronary arteries
Significant coronary atherosclerotic lesion in the large epicardial coronary arteries (ie, conductive vessels) with at least a 50% reduction in arterial diameter
Coronary spasm (ie, Prinzmetal angina)
Abnormal constriction or deficient endothelial-dependent relaxation of resistant vessels associated with diffuse vascular disease (ie, microvascular angina)9
Syndrome X
Systemic inflammatory or collagen vascular disease, such as scleroderma, systemic lupus erythematous, Kawasaki disease, polyarteritis nodosa, and Takayasu arteritis
Increased extravascular forces, such as severe LV hypertrophy caused by hypertension, aortic stenosis, or hypertrophic cardiomyopathy, or increased LV diastolic pressures
Reduction in the oxygen-carrying capacity of blood, such as elevated carboxyhemoglobin or severe anemia (hemoglobin, <8 g/dL)
Congenital anomalies of the origin and/or course of the major epicardial coronary arteries
Structural abnormalities of the coronary arteries
Congenital coronary artery aneurysm or fistula
Coronary artery ectasia
Coronary artery fibrosis after chest radiation
Coronary intimal fibrosis following cardiac transplantation
Risk factors
Major risk factors for atherosclerosis: These include a family history of premature coronary artery disease, cigarette smoking, diabetes mellitus, hypercholesterolemia, or systemic hypertension.
Other risk factors: These include LV hypertrophy, obesity, and elevated serum levels of homocysteine, lipoprotein (a), plasminogen activator inhibitor, fibrinogen, serum triglycerides, or low high-density lipoprotein (HDL).
Metabolic syndrome: This has been characterized by the presence of hyperinsulinemia (fasting glucose level, ³ 100 mg/dL), abdominal obesity (waist circumference, >40 in for men or >35 in for women), decreased HDL cholesterol levels (<40 mg/dL for men or <50 mg/dL for women), hypertriglyceridemia (>150 mg/dL), and hypertension (³ 130/85 mm Hg). Based on data from the 2000 US census, an estimated 47 million Americans have the metabolic syndrome. Patients with the metabolic syndrome have a 3-fold increased risk for coronary atherosclerosis and stroke compared with those without this syndrome.7
Precipitating factors: These include factors such as severe anemia, fever, tachyarrhythmias, catecholamines, emotional stress, and hyperthyroidism, which increase myocardial oxygen demand.
Preventive factors: Factors associated with reduced risk of atherosclerosis are a high serum HDL cholesterol level, physical activity, estrogen, and moderate alcohol intake (1-2 drinks/d).
http://emedicine.medscape.com/article/150215-overview
Abu Zubair meriwayatkan dari Jabir bin Abdullah bahwa Nabi Muhammad SAW bersabda:
"Setiap penyakit ada obatnya. Jika obat yang tepat diberikan dengan izin Allah, penyakit itu akan sembuh".
(HR. Muslim, Ahmad dan Hakim).
Jumat, 08 Januari 2010
Angina Pectoris
Diposting oleh FX di 19.39
Langganan:
Posting Komentar (Atom)
The Holy Al-Qur'an (English version)
- Surah 1 - Al Fatiha THE OPENING
- Surah 2 - Al Baqarah THE HEIFER
- Surah 3 - Ali 'Imran - THE FAMILY OF 'IMRAN
- Surah 4 - Al-Nisa' THE WOMEN
- Surah 5 - Al Ma'idah THE REPAST
- Surah 6 - Al An'am THE CATTLE
- Surah 7 - Al A'raf THE HEIGHTS
- Surah 8 - Al Anfal THE SPOILS OF WAR
- Surah 9 - Al Tawbah THE REPENTANCE
- Surah 10 - Yunus JONAH
- Surah 11 - Hud THE PROPHET HUD
- Surah 12 - Yusuf JOSEPH
- Surah 13 - Al Ra'd THE THUNDER
- Surah 14 - Ibrahim ABRAHAM
- Surah 15 - Al Hijr THE ROCKY TRACT
- Surah 16 - Al Nahl BEES
- Surah 17 - Al Isra' THE NIGHT JOURNEY
- Surah 18 - Al Kahf THE CAVE
- Surah 19 - Maryam MARY
- Surah 20 - TA HA
- Surah 21 - Al Anbiya THE PROPHETS
- Surah 22 - Al Hajj THE PILGRIMAGE
- Surah 23 - Al Mu'minun THE BELIEVERS
- Surah 24 - Al Nur THE LIGHT
- Surah 25 - Al Furqan THE CRITERION
- Surah 26 - Al Shu'ara' THE POETS
- Surah 27 - Al Naml THE ANTS
- Surah 28 - Al Qasas THE NARRATIONS
- Surah 29 - Al 'Ankabut THE SPIDER
- Surah 30 - Al Rum THE ROMANS
- Surah 31 - Luqman LUQMAN
- Surah 32 - Al Sajdah THE PROSTRATION
- Surah 33 - Al Ahzab THE CONFEDERATES
- Surah 34 - Saba' SHEBA
- Surah 35 - Fatir THE ORIGINATOR OF CREATION
- Surah 36 - Ya Sin YA SIN
- Surah 37 - Al Saffat THOSE RANGED IN RANKS
- Surah 38 - Sad SAD
- Surah 39 - Al Zumar CROWDS
- Surah 40 - Ghafir FORGIVER
- Surah 41 - Fussilat EXPOUNDED
- Surah 42 - Al Shura CONSULTATION
- Surah 43 - Al Zukhruf THE GOLD ADORNMENTS
- Surah 44 - Al Dukhan THE SMOKE
- Surah 45 - Al Jathiyah THE KNEELING DOWN
- Surah 46 - Al Ahqaf WINDING SAND-TRACTS
- Surah 47 - Muhammad MUHAMMAD
- Surah 48 - Al Fath THE VICTORY
- Surah 49 - Al Hujurat THE CHAMBERS
- Surah 50 - Qaf QAF
- Surah 51 - Al Dhariyat THE WINDS THAT SCATTER
- Surah 52 - Al Tur THE MOUNT
- Surah 53 - Al Najm THE STAR
- Surah 54 - Al Qamar THE MOON
- Surah 55 - Al Rahman THE MOST GRACIOUS
- Surah 56 - Al Waq'iah THE INEVITABLE
- Surah 57 - Al Hadid IRON
- Surah 58 - Al Mujadilah THE WOMAN WHO PLEADS
- Surah 59 - Al Hashr THE MUSTERING
- Surah 60 - Al Mumtahinah THAT WHICH EXAMINES
- Surah 61 - Al Saff THE BATTLE ARRAY
- Surah 62 - Al Jumu'ah FRIDAY
- Surah 63 - Al Munafiqun THE HYPOCRITES
- Surah 64 - Al Taghabun THE MUTUAL LOSS AND GAIN
- Surah 65 - Al Talaq DIVORCE
- Surah 66 - Al Tahrim PROHIBITION
- Surah 67 - Al Mulk THE DOMINION
- Surah 68 - Al Qalam THE PEN
- Surah 69 - Al Haqqah THE SURE REALITY
- Surah 70 - Al Ma'arij THE WAYS OF ASCENT
- Surah 71 - Nuh NOAH
- Surah 72 - Al Jinn THE SPIRITS
- Surah 73 - Al Muzzammil THE ENFOLDED ONE
- Surah 74 - Al Muddaththir THE ONE WRAPPED UP
- Surah 75 - Al Qiyamah THE RESURRECTION
- Surah 76 - Al Insan MAN
- Surah 77 - Al Mursalat THOSE SENT FORTH
- Surah 78 - Al Naba' THE GREAT NEWS
- Surah 79 - Al Nazi'at THOSE WHO TEAR OUT
- Surah 80 - 'Abasa HE FROWNED
- Surah 81 - Al Takwir THE FOLDING UP
- Surah 82 - Al Infitar THE CLEAVING ASUNDER
- Surah 83 - Al Mutaffifin THE DEALERS IN FRAUD
- Surah 84 - Al Inshiqaq THE RENDING ASUNDER
- Surah 85 - Al Buruj THE CONSTELLATIONS
- Surah 86 - Al Tariq THE NIGHT STAR
- Surah 87 - Al A'la THE MOST HIGH
- Surah 88 - Al Ghashiyah THE OVERWHELMING EVENT
- Surah 89 - Al Fajr THE DAWN
- Surah 90 - Al Balad THE CITY
- Surah 91 - Al Shams THE SUN
- Surah 92 - Al Layl THE NIGHT
- Surah 93 - Al Duha THE GLORIOUS MORNING LIGHT
- Surah 94 - Al Sharh THE EXPANSION OF THE BREAST
- Surah 95 - Al Tin THE FIG
- Surah 96 - Al Alaq THE CLINGING CLOT
- Surah 97 - Al Qadr THE NIGHT OF POWER
- Surah 98 - Al Bayyinah THE CLEAR EVIDENCE
- Surah 99 - Al Zalzalah THE EARTHQUAKE
- Surah 100 - Al 'Adiyat THOSE THAT RUN
- Surah 101 - Al Qari'ah THE GREAT CALAMITY
- Surah 102 - Al Takathur THE PILING UP
- Surah 103 - Al 'Asr TIME THROUGH THE AGES
- Surah 104 - Al Humazah THE SCANDALMONGER
- Surah 105 - Al Fil THE ELEPHANT
- Surah 106 - Quraysh THE TRIBE OF QURAYSH
- Surah 107 - Al Ma'un THE NEIGHBOURLY ASSISTANCE
- Surah 108 - Al Kawthar THE ABUNDANCE
- Surah 109 - Al Kafirun THOSE WHO REJECT FAITH
- Surah 110 - Al Nasr THE HELP
- Surah 111 - Al Masad THE PLAITED ROPE
- Surah 112 - Al Ikhlas THE PURITY OF FAITH
- Surah 113 - Al Falaq THE DAYBREAK
- Surah 114 - Al Nas MANKIND
http://www.jannah.org/qurantrans/
http://www.jannah.org/qurantrans/
Cardiovascular
- Acute Coronary Syndromes
- Angina Pectoris
- Anomalous Left Coronary Artery From the Pulmonary Artery
- Aortic Coarctation
- Aortic Dissection
- Aortic Regurgitation
- Aortic Stenosis
- Aortic Stenosis, Subaortic
- Aortic Stenosis, Supravalvar
- Aortitis
- Ashman Phenomenon
- Atherosclerosis
- Atrial Fibrillation
- Atrial Flutter
- Atrial Myxoma
- Atrial Septal Defect
- Atrial Tachycardia
- Atrioventricular Block
- Atrioventricular Dissociation
- Atrioventricular Nodal Reentry Tachycardia (AVNRT)
- Benign Cardiac Tumors
- Brugada Syndrome
- Complications of Myocardial Infarction
- Coronary Artery Atherosclerosis
- Coronary Artery Vasospasm
- Digitalis Toxicity
- Dissection, Aortic
- Ebstein Anomaly
- Eisenmenger Syndrome
- First-Degree Atrioventricular Block
- HACEK Group Infections (Infective Endocarditis)
- Heart Failure - Decompensatio Cordis
- Holiday Heart Syndrome
- Hypertensive Heart Disease
- Junctional Rhythm
- Loeffler Endocarditis
- Long QT Syndrome
- Lutembacher Syndrome
- Mitral Regurgitation
- Mitral Stenosis
- Mitral Valve Prolapse
- Myocardial Infarction
- Myocardial Rupture
- Paroxysmal Supraventricular Tachycardia
- Patent Ductus Arteriosus
- Patent Foramen Ovale
- Pericardial Effusion
- Pericarditis Acute
- Pericarditis, Constrictive
- Pericarditis, Constrictive-Effusive
- Pulmonic Regurgitation
- Pulmonic Stenosis
- Right Ventricular Infarction
- Saphenous Vein Graft Aneurysms
- Second-Degree Atrioventricular Block
- Sinus of Valsalva Aneurysm
- Sudden Cardiac Death
- Syncope
- Tetralogy of Fallot
- Third-Degree Atrioventricular Block
- Torsade de Pointes
- Tricuspid Regurgitation
- Tricuspid Stenosis
- Unstable Angina
- Ventricular Fibrillation
- Ventricular Septal Defect
- Ventricular Tachycardia
- Wolff-Parkinson-White Syndrome
DISCLAIMER
The content of this Website is not influenced by sponsors. The site is designed primarily for use by qualified physicians and other medical professionals. The information contained herein should NOT be used as a substitute for the advice of an appropriately qualified and licensed physician or other health care provider. The information provided here is for educational and informational purposes only. In no way should it be considered as offering medical advice. Please check with a physician if you suspect you are ill.
0 komentar:
Posting Komentar