Introduction
History of the Procedure
Galen initially described the ductus arteriosus in the early first century. Harvey undertook further physiologic study in fetal circulation. However, it was not until 1888 that Munro conducted the dissection and ligation of the ductus arteriosus in an infant cadaver, and it would be another 50 years before Robert E. Gross successfully ligated a patent ductus arteriosus (PDA) in a 7-year-old child. This was a landmark event in the history of surgery and heralded the true beginning of the field of congenital heart surgery.
Problem
PDA is a persistent communication between the descending thoracic aorta and the pulmonary artery that results from failure of normal physiological closure of the fetal ductus. In normal birth weight and full-term neonates, the ductus arteriosus (DA) closes within 3 days after birth. However, the DA is patent for more than 3 days after birth in 80% of preterm neonates weighing less than 750 g and its persistent patency is associated with increased morbidity and mortality. Furthermore, in the presence of a significant left-to-right ductal shunt in low birth weight (LBW) neonates, a decreased peripheral perfusion and oxygen delivery occurs.
Although frequently diagnosed in infants, the discovery of a PDA may be delayed until childhood or even adulthood. In isolated PDA, signs and symptoms are consistent with left-to-right shunting. The shunt volume is determined by the size of the open communication and the pulmonary vascular resistance. PDA may exist with other cardiac anomalies, which must be considered at the time of diagnosis. In many cases, the diagnosis and treatment of a PDA is critical for survival in neonates with severe obstructive lesions to either the right or left side of the heart.
Frequency
PDA occurs with an incidence of approximately 1 per 2000-2500 live births, comprising 5-10% of all congenital cardiac disease. Siblings have an increased incidence, suggesting a genetic component. Rubella, in the first trimester of the mother's pregnancy, has been associated with PDA and other congenital anomalies. For unknown reasons, PDA is more common in females by a ratio of 2:1. PDA is common in premature infants and may add significantly to morbidity and mortality.
Etiology
PDA is the result of failure of the fetal ductus arteriosus to constrict and close after birth.
Pathophysiology
In the fetal circulation, the ductus arteriosus is necessary to divert blood flow from the high-resistance pulmonary vascular bed, which receives only 5-8% of the right ventricular outflow, creating a right-to-left shunt. At birth, expansion of the neonatal lungs is associated with an immediate fall in pulmonary vascular resistance. Normal ductal constriction begins at this point and reaches completion in 8-10 hours. A second stage of closure related to fibrous proliferation of the intima is complete in 2-3 weeks. Patency after 3 months is considered abnormal, and treatment should be considered at this juncture, although urgency is seldom necessary.
The ductus is a muscular artery with a thick smooth muscle layer in its medial layer. It contracts and closes within a few days after birth. A balance of factors that cause relaxation and contraction determine the vascular tone of the ductus. Major factors causing relaxation are the high prostaglandin levels, hypoxemia, and nitric oxide production in the ductus. Factors resulting in contraction include decreased prostaglandin levels, increased oxygen partial pressure, increased endothelin-1, norepinephrine, acetylcholine, bradykinin, and decreased prostaglandin E receptors. Increased prostaglandin sensitivity, in conjunction with pulmonary immaturity leading to hypoxia, contributes to the increased frequency of PDA in premature neonates.
Failure of ductus arteriosus contraction in preterm neonates has been suggested to be due to poor prostaglandin metabolism because of immature lungs. Furthermore, high reactivity to prostaglandin and reduced calcium sensitivity to oxygen in vascular smooth muscle cells contribute to contraction of the ductus. The absence of DA contraction in full-term neonates might be due to failed prostaglandin metabolism most likely caused by hypoxemia, asphyxia, or increased pulmonary blood flow, renal failure, and respiratory disorders.
COX-2 (an isoform of COX-producing prostaglandins) induction and expression might also prevent ductal closure. The activation of G protein-coupled receptors EP4 by PGE2, the primary prostaglandin regulating ductal tone leads to ductal smooth muscle relaxation.
During late gestation, the decrease in prostaglandin levels results in constriction of the ductus arteriosus. Thus, the intimal cushions come into contact and occlude the ductus lumen.
A PDA is considered pathological when it persists beyond 3 months of age or is associated with symptoms. Spontaneous closure after 5 months is rare in the full-term infant. Left untreated, patients with a large PDA are at risk to develop Eisenmenger Syndrome, in which the pulmonary vascular resistance can exceed systemic vascular resistance, and the usual left-to-right shunting reverses to a right-to-left direction. At this stage, the pulmonary vascular disease is irreversible, closure of the PDA is contraindicated, and lung transplantation may be the only hope for long-term survival.
Presentation
Signs and symptoms of PDA are the result of left-to-right shunting and are proportional to the magnitude of the blood flow through the ductus.
History
Most patients with PDA present with a machinery murmur and are asymptomatic. Neonates and infants may present with signs of heart failure including tachypnea, diaphoresis, failure to thrive, inability to feed, and irritability. They may also have a history of frequent recurrent pulmonary infections. Adults whose PDA has gone undiagnosed may present with signs and symptoms of heart failure, atrial arrhythmia, or even differential cyanosis limited to the lower extremities, indicating shunting of unoxygenated blood from the pulmonary to systemic circulation.
Physical examination
Patients typically present in good health, with normal respirations and heart rate. If the ductus is moderate or large, widened pulse pressure and bounding peripheral pulses are frequently present, reflecting increased left ventricular stroke volume and diastolic runoff of blood into the initially lower-resistance pulmonary vascular bed. Prominent suprasternal and carotid pulsations may be noted secondary to increased left ventricular stroke volume.
The continuous murmur with a machinery quality is typically loudest at the left upper and midsternal border. In patients with severe heart failure and severe elevation of pulmonary vascular resistance, no audible murmur may be present. Patients with large PDA can develop Eisenmenger pathophysiology and present with cyanosis because of reversed shunting when pulmonary arterial pressures exceed systemic pressure as described earlier.
In neonates, a heart murmur is discovered within the first few days or weeks of life. The murmur is usually recognized as systolic rather than continuous in the first weeks of life and can mimic a benign systolic murmur.
Because of changes in the pulmonary vasculature, in adults, diastolic runoff decreases to the point that only a systolic component may exist.
Furthermore, distinguishing between clinically significant and nonsignificant PDA is important. A clinically significant PDA is characterized by respiratory problems with ventilation difficulties, coupled with pulmonary congestion with tachycardia, bounding pulses, and metabolic acidosis. The left-to-right shunt leads to an increased risk of complications that include intraventricular hemorrhage, narcotizing enterocolitis, chronic lung disease, and death.
Indications
With rare exceptions, the presence of a patent ductus arteriosus (PDA) is an indication for surgical closure. In the infant, repair may be urgent for the symptomatic patient with evidence of cardiac or respiratory failure not adequately controlled with medications, or it may be delayed in the patient who is asymptomatic or well controlled on medical therapy.
Differential diagnoses
Ventricular septal defect
Aortopulmonary window (aortopulmonary fenestration)
Venous hum
Truncus arteriosus
Absent pulmonary valve syndrome
Ventricular septal defect with aortic regurgitation
Ruptured sinus of Valsalva and fistula
Systemic arteriovenous fistula
Coronary artery fistula
Pulmonary arteriovenous fistulae
Bronchial pulmonary artery stenosis
Relevant Anatomy
The patent ductus arteriosus (PDA) connects the pulmonary artery to the descending thoracic aorta, usually 2-10 mm from the aortic origin of the left subclavian artery. It is commonly 5-10 mm long and tends to be shorter in the adult. The aortic orifice tends to be wider and narrows en route to the pulmonary opening.
In the presence of complex congenital heart defects, the usual anatomy of the ductus may not be present. Anatomic abnormalities can vary widely and are common in conjunction with complex aortic arch anomalies. Structures that have been mistaken for the PDA in surgical procedures include the aorta, the pulmonary artery, and the carotid artery. The left recurrent laryngeal nerve typically arises from the vagus nerve just anterior and caudal to the ductus and loops posteriorly around the ductus to ascend behind the aorta en route to the larynx. It is the most commonly injured anatomic structure in ductal ligation. Other less commonly injured structures include the phrenic nerve and the thoracic duct.
Contraindications
The primary contraindication to repair is severe pulmonary vascular disease. If transient intraoperative occlusion of the PDA does not decrease elevated pulmonary arterial pressures with a subsequent increase in aortic pressure, then the closure must be undertaken carefully and may be contraindicated. Closure of the ductus does not reverse preexisting pulmonary vascular disease.
A subset of associated cardiac anomalies—so-called ductal-dependent lesions—depend on flow through the PDA to maintain systemic blood flow. Premature closure of the ductus without concurrent repair of the following defects is contraindicated and may be fatal:
Pulmonary artery hypoplasia
Pulmonary atresia
Tricuspid atresia
Transposition of the great arteries
Aortic valve atresia
Mitral valve atresia with hypoplastic left ventricle
Severe coarctation of the aorta
http://emedicine.medscape.com/article/162796-overview
Abu Zubair meriwayatkan dari Jabir bin Abdullah bahwa Nabi Muhammad SAW bersabda:
"Setiap penyakit ada obatnya. Jika obat yang tepat diberikan dengan izin Allah, penyakit itu akan sembuh".
(HR. Muslim, Ahmad dan Hakim).
Jumat, 01 Januari 2010
Patent Ductus Arteriosus
Diposting oleh FX di 09.59
Langganan:
Posting Komentar (Atom)
The Holy Al-Qur'an (English version)
- Surah 1 - Al Fatiha THE OPENING
- Surah 2 - Al Baqarah THE HEIFER
- Surah 3 - Ali 'Imran - THE FAMILY OF 'IMRAN
- Surah 4 - Al-Nisa' THE WOMEN
- Surah 5 - Al Ma'idah THE REPAST
- Surah 6 - Al An'am THE CATTLE
- Surah 7 - Al A'raf THE HEIGHTS
- Surah 8 - Al Anfal THE SPOILS OF WAR
- Surah 9 - Al Tawbah THE REPENTANCE
- Surah 10 - Yunus JONAH
- Surah 11 - Hud THE PROPHET HUD
- Surah 12 - Yusuf JOSEPH
- Surah 13 - Al Ra'd THE THUNDER
- Surah 14 - Ibrahim ABRAHAM
- Surah 15 - Al Hijr THE ROCKY TRACT
- Surah 16 - Al Nahl BEES
- Surah 17 - Al Isra' THE NIGHT JOURNEY
- Surah 18 - Al Kahf THE CAVE
- Surah 19 - Maryam MARY
- Surah 20 - TA HA
- Surah 21 - Al Anbiya THE PROPHETS
- Surah 22 - Al Hajj THE PILGRIMAGE
- Surah 23 - Al Mu'minun THE BELIEVERS
- Surah 24 - Al Nur THE LIGHT
- Surah 25 - Al Furqan THE CRITERION
- Surah 26 - Al Shu'ara' THE POETS
- Surah 27 - Al Naml THE ANTS
- Surah 28 - Al Qasas THE NARRATIONS
- Surah 29 - Al 'Ankabut THE SPIDER
- Surah 30 - Al Rum THE ROMANS
- Surah 31 - Luqman LUQMAN
- Surah 32 - Al Sajdah THE PROSTRATION
- Surah 33 - Al Ahzab THE CONFEDERATES
- Surah 34 - Saba' SHEBA
- Surah 35 - Fatir THE ORIGINATOR OF CREATION
- Surah 36 - Ya Sin YA SIN
- Surah 37 - Al Saffat THOSE RANGED IN RANKS
- Surah 38 - Sad SAD
- Surah 39 - Al Zumar CROWDS
- Surah 40 - Ghafir FORGIVER
- Surah 41 - Fussilat EXPOUNDED
- Surah 42 - Al Shura CONSULTATION
- Surah 43 - Al Zukhruf THE GOLD ADORNMENTS
- Surah 44 - Al Dukhan THE SMOKE
- Surah 45 - Al Jathiyah THE KNEELING DOWN
- Surah 46 - Al Ahqaf WINDING SAND-TRACTS
- Surah 47 - Muhammad MUHAMMAD
- Surah 48 - Al Fath THE VICTORY
- Surah 49 - Al Hujurat THE CHAMBERS
- Surah 50 - Qaf QAF
- Surah 51 - Al Dhariyat THE WINDS THAT SCATTER
- Surah 52 - Al Tur THE MOUNT
- Surah 53 - Al Najm THE STAR
- Surah 54 - Al Qamar THE MOON
- Surah 55 - Al Rahman THE MOST GRACIOUS
- Surah 56 - Al Waq'iah THE INEVITABLE
- Surah 57 - Al Hadid IRON
- Surah 58 - Al Mujadilah THE WOMAN WHO PLEADS
- Surah 59 - Al Hashr THE MUSTERING
- Surah 60 - Al Mumtahinah THAT WHICH EXAMINES
- Surah 61 - Al Saff THE BATTLE ARRAY
- Surah 62 - Al Jumu'ah FRIDAY
- Surah 63 - Al Munafiqun THE HYPOCRITES
- Surah 64 - Al Taghabun THE MUTUAL LOSS AND GAIN
- Surah 65 - Al Talaq DIVORCE
- Surah 66 - Al Tahrim PROHIBITION
- Surah 67 - Al Mulk THE DOMINION
- Surah 68 - Al Qalam THE PEN
- Surah 69 - Al Haqqah THE SURE REALITY
- Surah 70 - Al Ma'arij THE WAYS OF ASCENT
- Surah 71 - Nuh NOAH
- Surah 72 - Al Jinn THE SPIRITS
- Surah 73 - Al Muzzammil THE ENFOLDED ONE
- Surah 74 - Al Muddaththir THE ONE WRAPPED UP
- Surah 75 - Al Qiyamah THE RESURRECTION
- Surah 76 - Al Insan MAN
- Surah 77 - Al Mursalat THOSE SENT FORTH
- Surah 78 - Al Naba' THE GREAT NEWS
- Surah 79 - Al Nazi'at THOSE WHO TEAR OUT
- Surah 80 - 'Abasa HE FROWNED
- Surah 81 - Al Takwir THE FOLDING UP
- Surah 82 - Al Infitar THE CLEAVING ASUNDER
- Surah 83 - Al Mutaffifin THE DEALERS IN FRAUD
- Surah 84 - Al Inshiqaq THE RENDING ASUNDER
- Surah 85 - Al Buruj THE CONSTELLATIONS
- Surah 86 - Al Tariq THE NIGHT STAR
- Surah 87 - Al A'la THE MOST HIGH
- Surah 88 - Al Ghashiyah THE OVERWHELMING EVENT
- Surah 89 - Al Fajr THE DAWN
- Surah 90 - Al Balad THE CITY
- Surah 91 - Al Shams THE SUN
- Surah 92 - Al Layl THE NIGHT
- Surah 93 - Al Duha THE GLORIOUS MORNING LIGHT
- Surah 94 - Al Sharh THE EXPANSION OF THE BREAST
- Surah 95 - Al Tin THE FIG
- Surah 96 - Al Alaq THE CLINGING CLOT
- Surah 97 - Al Qadr THE NIGHT OF POWER
- Surah 98 - Al Bayyinah THE CLEAR EVIDENCE
- Surah 99 - Al Zalzalah THE EARTHQUAKE
- Surah 100 - Al 'Adiyat THOSE THAT RUN
- Surah 101 - Al Qari'ah THE GREAT CALAMITY
- Surah 102 - Al Takathur THE PILING UP
- Surah 103 - Al 'Asr TIME THROUGH THE AGES
- Surah 104 - Al Humazah THE SCANDALMONGER
- Surah 105 - Al Fil THE ELEPHANT
- Surah 106 - Quraysh THE TRIBE OF QURAYSH
- Surah 107 - Al Ma'un THE NEIGHBOURLY ASSISTANCE
- Surah 108 - Al Kawthar THE ABUNDANCE
- Surah 109 - Al Kafirun THOSE WHO REJECT FAITH
- Surah 110 - Al Nasr THE HELP
- Surah 111 - Al Masad THE PLAITED ROPE
- Surah 112 - Al Ikhlas THE PURITY OF FAITH
- Surah 113 - Al Falaq THE DAYBREAK
- Surah 114 - Al Nas MANKIND
http://www.jannah.org/qurantrans/
http://www.jannah.org/qurantrans/
Cardiovascular
- Acute Coronary Syndromes
- Angina Pectoris
- Anomalous Left Coronary Artery From the Pulmonary Artery
- Aortic Coarctation
- Aortic Dissection
- Aortic Regurgitation
- Aortic Stenosis
- Aortic Stenosis, Subaortic
- Aortic Stenosis, Supravalvar
- Aortitis
- Ashman Phenomenon
- Atherosclerosis
- Atrial Fibrillation
- Atrial Flutter
- Atrial Myxoma
- Atrial Septal Defect
- Atrial Tachycardia
- Atrioventricular Block
- Atrioventricular Dissociation
- Atrioventricular Nodal Reentry Tachycardia (AVNRT)
- Benign Cardiac Tumors
- Brugada Syndrome
- Complications of Myocardial Infarction
- Coronary Artery Atherosclerosis
- Coronary Artery Vasospasm
- Digitalis Toxicity
- Dissection, Aortic
- Ebstein Anomaly
- Eisenmenger Syndrome
- First-Degree Atrioventricular Block
- HACEK Group Infections (Infective Endocarditis)
- Heart Failure - Decompensatio Cordis
- Holiday Heart Syndrome
- Hypertensive Heart Disease
- Junctional Rhythm
- Loeffler Endocarditis
- Long QT Syndrome
- Lutembacher Syndrome
- Mitral Regurgitation
- Mitral Stenosis
- Mitral Valve Prolapse
- Myocardial Infarction
- Myocardial Rupture
- Paroxysmal Supraventricular Tachycardia
- Patent Ductus Arteriosus
- Patent Foramen Ovale
- Pericardial Effusion
- Pericarditis Acute
- Pericarditis, Constrictive
- Pericarditis, Constrictive-Effusive
- Pulmonic Regurgitation
- Pulmonic Stenosis
- Right Ventricular Infarction
- Saphenous Vein Graft Aneurysms
- Second-Degree Atrioventricular Block
- Sinus of Valsalva Aneurysm
- Sudden Cardiac Death
- Syncope
- Tetralogy of Fallot
- Third-Degree Atrioventricular Block
- Torsade de Pointes
- Tricuspid Regurgitation
- Tricuspid Stenosis
- Unstable Angina
- Ventricular Fibrillation
- Ventricular Septal Defect
- Ventricular Tachycardia
- Wolff-Parkinson-White Syndrome
DISCLAIMER
The content of this Website is not influenced by sponsors. The site is designed primarily for use by qualified physicians and other medical professionals. The information contained herein should NOT be used as a substitute for the advice of an appropriately qualified and licensed physician or other health care provider. The information provided here is for educational and informational purposes only. In no way should it be considered as offering medical advice. Please check with a physician if you suspect you are ill.
0 komentar:
Posting Komentar