Introduction
Background
The word vitamin was originally derived from Funk's term "vital amine." In 1912, he was referring to Christian Eijkman's discovery of an amine extracted from rice polishings that could prevent beriberi. Funk's recognition of the antiberiberi factor as vital for life was indeed accurate. Researchers have since found that vitamins are essential organic compounds that the human body cannot synthesize. Vitamins A, D, K, and E are classified as fat-soluble vitamins, whereas others are classified as water-soluble vitamins.1,2
Vitamin A was the first fat-soluble vitamin to be discovered. Early observations by ancient Egyptians recognized that night blindness could be treated with consumption of liver. Two independent research teams, Osborne and Mendel at Yale University and McCollum and Davis at the University of Wisconsin, simultaneously discovered vitamin A in 1913. Vitamin A is made up of a family of compounds called the retinoids. The retinoid designation resulted from finding that vitamin A had the biologic activity of retinol, which was originally isolated from the retina.
There are essentially 3 forms of vitamin A: retinols, beta carotenes, and carotenoids. Retinol, also known as preformed vitamin A, is the most active form and is mostly found in animal sources of food. Beta carotene, also known as provitamin A, is the plant source of retinol from which mammals make two-thirds of their vitamin A. Carotenoids, the largest group of the 3, contain multiple conjugated double bonds and exist in a free alcohol or in a fatty acyl-ester form.
In the human body, retinol is the predominant form, and 11-cis -retinol is the active form. Retinol-binding protein (RBP) binds vitamin A and regulates its absorption and metabolism. Vitamin A is essential for vision (especially dark adaptation), immune response, bone growth, reproduction, the maintenance of the surface linings of the eyes, epithelial cell growth and repair, and the epithelial integrity of the respiratory, urinary, and intestinal tracts. Vitamin A is also important for embryonic development and the regulation of adult genes. It functions as an activator of gene expression by retinoid alpha-receptor transcription factor and ligand-dependent transcription factor.
Deficiency of vitamin A is found among malnourished, elderly, and chronically sick populations in the United States, but it is more prevalent in developing countries. Abnormal visual adaptation to darkness, dry skin, dry hair, broken fingernails, and decreased resistance to infections are among the first signs of vitamin A deficiency (VAD).3
Pathophysiology
Once ingested, provitamins A are released from proteins in the stomach. These retinyl esters are then hydrolyzed to retinol in the small intestine, because retinol is more efficiently absorbed. Carotenoids are cleaved in the intestinal mucosa into molecules of retinaldehyde, which is subsequently reduced to retinol and then esterified to retinyl esters. The retinyl esters of retinoid and carotenoid origin are transported via micelles in the lymphatic drainage of the intestine to the blood and then to the liver as components of chylomicrons. In the body, 50-80% of vitamin A is stored in the liver, where it is bound to the cellular RBP. The remaining vitamin A is deposited into adipose tissue, the lungs, and the kidneys as retinyl esters, most commonly as retinyl palmitate.
Vitamin A can be mobilized from the liver to peripheral tissue by a process of deesterification of the retinyl esters. In blood, vitamin A is bound to RBP, which transports it as a complex with transthyretin. The hepatic synthesis of RBP is dependent on the presence of zinc and amino acids to maintain its narrow serum range of 40-50 mcg/dL. Through a receptor-mediated process, the retinol is taken up by the peripheral tissues from the RBP-transthyretin complex.
VAD may be secondary to decreased ingestion, defective absorption and altered metabolism, or increased requirements. An adult liver can store up to a year's reserve of vitamin A, whereas a child's liver may have enough stores to last only several weeks. Serum retinol concentration reflects an individual's vitamin A status. Because serum retinol is homeostatically controlled, its levels do not drop until the body's stores are significantly limited. The serum concentration of retinol is affected by several factors, including RBP synthesis in the liver, infection, nutritional status, and the existing level of other nutrients, such as zinc and iron.4
In zinc deficiency, impaired synthesis of proteins occurs with rapid turnover (eg, RBP). In turn, this impairment affects retinol transport by RBP from the liver to the circulation and to other tissues. The mechanism by which iron affects vitamin A metabolism has not been identified, but randomized, double-blind studies have shown that vitamin A supplementation alone is not sufficient to improve VAD in the presence of coexisting iron deficiency.
The bioavailability of the carotenoids varies; this availability depends on absorption and on their yield of retinol. Only 40-60% of ingested beta carotene from plant sources is absorbed by the human body, whereas 80-90% of retinyl esters from animal proteins are absorbed. Carotenoid absorption is affected by dietary factors, including zinc deficiency, abetalipoproteinemia, and protein deficiency.
Because vitamin A is a fat-soluble vitamin, any GI diseases affecting the absorption of fats also affect vitamin A absorption. Patients with cystic fibrosis, sprue, pancreatic insufficiency, inflammatory bowel disorder (IBD), or cholestasis, as well as persons who have undergone small-bowel bypass surgery, are at increased risk for VAD. These patients should be advised to consume vitamin A.
One factor affecting the metabolism of vitamin A is alcoholism. Alcohol dehydrogenase catalyzes the conversion of retinol to retinaldehyde, which is then oxidized to retinoic acid. The affinity of alcohol dehydrogenase to ethanol impedes the conversion of retinol to retinoic acid.
Increased requirements of vitamin A most commonly occur among sick children. The American Academy of Pediatrics has recommended vitamin A supplementation for infants aged 6-24 months who are hospitalized with measles and for all hospitalized children older than 6 months. In the 1960s, the World Health Organization (WHO) undertook the first global survey of VAD with associated xerophthalmia and complicated measles.5 In 1973, an international vitamin A board was set up to alleviate global malnutrition.
The WHO and the United Nations International Children's Emergency Fund (UNICEF) have issued joint statements recommending that vitamin A be administered to all children, especially those younger than 2 years, who are diagnosed with measles. Coexistent VAD in young children increases the risk of death. The Cochrane Database Systemic Review concluded that daily treatment with 200,000 IU of vitamin A for at least 2 days reduces mortality rates.6,7
Pregnant women do not require increased vitamin A supplementation. In fact, the Teratology Society advocates that women be informed of the possible risk of cranial neural crest defects and other malformations resulting from excessive use of vitamin A shortly before or during pregnancy.8 The recommended daily allowance (RDA) of 800 mcg for all adult females is also appropriate for pregnant women, because their stores of vitamin A meet the fetal accretion rate. The requirements for lactating women have been debated, but the current RDA is 1300 mcg in the first 6 months and 1200 mcg in the second 6 months.
The RDAs of vitamin A for various age groups are as follows:
* Infants aged 1 year or younger - 375 mcg
* Children aged 1-3 years - 400 mcg
* Children aged 4-6 years - 500 mcg
* Children aged 7-10 years - 700 mcg
* All males older than 10 years - 1000 mcg
* All females older than 10 years - 800 mcg
Frequency
United States
Statistics from the US Centers for Disease Control and Prevention, based on a 1988-1991 survey, showed that age-specific intakes of carotenes were higher among males than females during that period and were higher among adults than children.9 Significant differences in intake existed among different ethnic groups.
International
Clinical and subclinical VAD are problems in at least 75 countries.10 In 1994, the WHO classified countries as having clinical or subclinical, severe, moderate, or mild VAD. Clinical VAD (in which children demonstrate ophthalmic signs and symptoms, including blindness) occurs mainly in countries in Southeast Asia and sub-Saharan Africa.5 Severe VAD is also found in persons in refugee settlements and in displaced populations.
Mortality/Morbidity
* United States - VAD is uncommon in the general population, but subgroups of patients suffering from fat malabsorption, cholestasis, or IBD or who have undergone small-bowel bypass may have subclinical deficiency with dark-adaptation abnormalities in the range of 60%. Vegans, persons with alcoholism, toddlers and preschool children living below the poverty line, and recent immigrants or refugees from developing countries all have increased risk of VAD secondary to decreased ingestion.
* Developing countries - An estimated 250 million children are at risk for vitamin deficiency syndromes. The most widely affected group includes up to 10 million malnourished children, who develop xerophthalmia and have an increased risk of complications and death from measles. Each year, 250,000-500,000 children become blind because of VAD. Improving the vitamin A status of children with deficiencies (aged 6-59 mo) can reduce measles and diarrhea mortality rates by 50% and 33%, respectively, and can decrease risk rates from all causes of mortality by 23%.
Clinical
History
Subclinical forms of VAD may not cause any symptoms, but the risk of developing respiratory and diarrheal infections is increased, the growth rate is decreased, and bone development is slowed. Patients may have a recent history of increased infections, infertility secondary to impaired spermatogenesis, or recent spontaneous abortion secondary to impaired embryonic development. The patient may also report increased fatigue, as a manifestation of VAD anemia.
Physical
Signs and symptoms of vitamin A deficiency include the following:
* Bitot spots - Areas of abnormal squamous cell proliferation and keratinization of the conjunctiva can be seen in young children with VAD.
* Blindness due to retinal injury - Vitamin A has a major role in phototransduction. The cone cells are responsible for the absorption of light and for color vision in bright light. The rod cells detect motion and are responsible for night vision. In the rod cells of the retina, all-trans-retinol is converted into 11-cis -retinol, which then combines with a membrane-bound protein called opsin to yield rhodopsin.11 A similar type of reaction occurs in the cone cells of the retina to produce iodopsin. The visual pigments absorb light at different wavelengths, according to the type of cone cell they occupy. VAD leads to a lack of visual pigments; this reduces the absorption of various wavelengths of light, resulting in blindness.
* Poor adaptation to darkness (nyctalopia)
* Dry skin
* Dry hair
* Pruritus
* Broken fingernails
* Keratomalacia
* Xerophthalmia
* Corneal perforation
* Follicular hyperkeratosis (phrynoderma) secondary to blockage of hair follicles with plugs of keratin.
* Other signs of VAD include excessive deposition of periosteal bone secondary to reduced osteoclastic activity, anemia, keratinization of mucous membranes, and impairment of the humoral and cell-mediated immune system.
Causes
The risk of VAD is increased in patients suffering from fat malabsorption, cystic fibrosis, sprue, pancreatic insufficiency, IBD, or cholestasis, as well as in persons who have undergone small-bowel bypass surgery. The risk is also increased in vegans, refugees, recent immigrants, persons with alcoholism, and toddlers and preschool children living below the poverty line. These patients should be advised to consume vitamin A.
http://emedicine.medscape.com/article/126004-overview
Abu Zubair meriwayatkan dari Jabir bin Abdullah bahwa Nabi Muhammad SAW bersabda:
"Setiap penyakit ada obatnya. Jika obat yang tepat diberikan dengan izin Allah, penyakit itu akan sembuh".
(HR. Muslim, Ahmad dan Hakim).
Kamis, 21 Januari 2010
Vitamin A Deficiency
Diposting oleh FX di 07.48
Langganan:
Posting Komentar (Atom)
The Holy Al-Qur'an (English version)
- Surah 1 - Al Fatiha THE OPENING
- Surah 2 - Al Baqarah THE HEIFER
- Surah 3 - Ali 'Imran - THE FAMILY OF 'IMRAN
- Surah 4 - Al-Nisa' THE WOMEN
- Surah 5 - Al Ma'idah THE REPAST
- Surah 6 - Al An'am THE CATTLE
- Surah 7 - Al A'raf THE HEIGHTS
- Surah 8 - Al Anfal THE SPOILS OF WAR
- Surah 9 - Al Tawbah THE REPENTANCE
- Surah 10 - Yunus JONAH
- Surah 11 - Hud THE PROPHET HUD
- Surah 12 - Yusuf JOSEPH
- Surah 13 - Al Ra'd THE THUNDER
- Surah 14 - Ibrahim ABRAHAM
- Surah 15 - Al Hijr THE ROCKY TRACT
- Surah 16 - Al Nahl BEES
- Surah 17 - Al Isra' THE NIGHT JOURNEY
- Surah 18 - Al Kahf THE CAVE
- Surah 19 - Maryam MARY
- Surah 20 - TA HA
- Surah 21 - Al Anbiya THE PROPHETS
- Surah 22 - Al Hajj THE PILGRIMAGE
- Surah 23 - Al Mu'minun THE BELIEVERS
- Surah 24 - Al Nur THE LIGHT
- Surah 25 - Al Furqan THE CRITERION
- Surah 26 - Al Shu'ara' THE POETS
- Surah 27 - Al Naml THE ANTS
- Surah 28 - Al Qasas THE NARRATIONS
- Surah 29 - Al 'Ankabut THE SPIDER
- Surah 30 - Al Rum THE ROMANS
- Surah 31 - Luqman LUQMAN
- Surah 32 - Al Sajdah THE PROSTRATION
- Surah 33 - Al Ahzab THE CONFEDERATES
- Surah 34 - Saba' SHEBA
- Surah 35 - Fatir THE ORIGINATOR OF CREATION
- Surah 36 - Ya Sin YA SIN
- Surah 37 - Al Saffat THOSE RANGED IN RANKS
- Surah 38 - Sad SAD
- Surah 39 - Al Zumar CROWDS
- Surah 40 - Ghafir FORGIVER
- Surah 41 - Fussilat EXPOUNDED
- Surah 42 - Al Shura CONSULTATION
- Surah 43 - Al Zukhruf THE GOLD ADORNMENTS
- Surah 44 - Al Dukhan THE SMOKE
- Surah 45 - Al Jathiyah THE KNEELING DOWN
- Surah 46 - Al Ahqaf WINDING SAND-TRACTS
- Surah 47 - Muhammad MUHAMMAD
- Surah 48 - Al Fath THE VICTORY
- Surah 49 - Al Hujurat THE CHAMBERS
- Surah 50 - Qaf QAF
- Surah 51 - Al Dhariyat THE WINDS THAT SCATTER
- Surah 52 - Al Tur THE MOUNT
- Surah 53 - Al Najm THE STAR
- Surah 54 - Al Qamar THE MOON
- Surah 55 - Al Rahman THE MOST GRACIOUS
- Surah 56 - Al Waq'iah THE INEVITABLE
- Surah 57 - Al Hadid IRON
- Surah 58 - Al Mujadilah THE WOMAN WHO PLEADS
- Surah 59 - Al Hashr THE MUSTERING
- Surah 60 - Al Mumtahinah THAT WHICH EXAMINES
- Surah 61 - Al Saff THE BATTLE ARRAY
- Surah 62 - Al Jumu'ah FRIDAY
- Surah 63 - Al Munafiqun THE HYPOCRITES
- Surah 64 - Al Taghabun THE MUTUAL LOSS AND GAIN
- Surah 65 - Al Talaq DIVORCE
- Surah 66 - Al Tahrim PROHIBITION
- Surah 67 - Al Mulk THE DOMINION
- Surah 68 - Al Qalam THE PEN
- Surah 69 - Al Haqqah THE SURE REALITY
- Surah 70 - Al Ma'arij THE WAYS OF ASCENT
- Surah 71 - Nuh NOAH
- Surah 72 - Al Jinn THE SPIRITS
- Surah 73 - Al Muzzammil THE ENFOLDED ONE
- Surah 74 - Al Muddaththir THE ONE WRAPPED UP
- Surah 75 - Al Qiyamah THE RESURRECTION
- Surah 76 - Al Insan MAN
- Surah 77 - Al Mursalat THOSE SENT FORTH
- Surah 78 - Al Naba' THE GREAT NEWS
- Surah 79 - Al Nazi'at THOSE WHO TEAR OUT
- Surah 80 - 'Abasa HE FROWNED
- Surah 81 - Al Takwir THE FOLDING UP
- Surah 82 - Al Infitar THE CLEAVING ASUNDER
- Surah 83 - Al Mutaffifin THE DEALERS IN FRAUD
- Surah 84 - Al Inshiqaq THE RENDING ASUNDER
- Surah 85 - Al Buruj THE CONSTELLATIONS
- Surah 86 - Al Tariq THE NIGHT STAR
- Surah 87 - Al A'la THE MOST HIGH
- Surah 88 - Al Ghashiyah THE OVERWHELMING EVENT
- Surah 89 - Al Fajr THE DAWN
- Surah 90 - Al Balad THE CITY
- Surah 91 - Al Shams THE SUN
- Surah 92 - Al Layl THE NIGHT
- Surah 93 - Al Duha THE GLORIOUS MORNING LIGHT
- Surah 94 - Al Sharh THE EXPANSION OF THE BREAST
- Surah 95 - Al Tin THE FIG
- Surah 96 - Al Alaq THE CLINGING CLOT
- Surah 97 - Al Qadr THE NIGHT OF POWER
- Surah 98 - Al Bayyinah THE CLEAR EVIDENCE
- Surah 99 - Al Zalzalah THE EARTHQUAKE
- Surah 100 - Al 'Adiyat THOSE THAT RUN
- Surah 101 - Al Qari'ah THE GREAT CALAMITY
- Surah 102 - Al Takathur THE PILING UP
- Surah 103 - Al 'Asr TIME THROUGH THE AGES
- Surah 104 - Al Humazah THE SCANDALMONGER
- Surah 105 - Al Fil THE ELEPHANT
- Surah 106 - Quraysh THE TRIBE OF QURAYSH
- Surah 107 - Al Ma'un THE NEIGHBOURLY ASSISTANCE
- Surah 108 - Al Kawthar THE ABUNDANCE
- Surah 109 - Al Kafirun THOSE WHO REJECT FAITH
- Surah 110 - Al Nasr THE HELP
- Surah 111 - Al Masad THE PLAITED ROPE
- Surah 112 - Al Ikhlas THE PURITY OF FAITH
- Surah 113 - Al Falaq THE DAYBREAK
- Surah 114 - Al Nas MANKIND
http://www.jannah.org/qurantrans/
http://www.jannah.org/qurantrans/
Cardiovascular
- Acute Coronary Syndromes
- Angina Pectoris
- Anomalous Left Coronary Artery From the Pulmonary Artery
- Aortic Coarctation
- Aortic Dissection
- Aortic Regurgitation
- Aortic Stenosis
- Aortic Stenosis, Subaortic
- Aortic Stenosis, Supravalvar
- Aortitis
- Ashman Phenomenon
- Atherosclerosis
- Atrial Fibrillation
- Atrial Flutter
- Atrial Myxoma
- Atrial Septal Defect
- Atrial Tachycardia
- Atrioventricular Block
- Atrioventricular Dissociation
- Atrioventricular Nodal Reentry Tachycardia (AVNRT)
- Benign Cardiac Tumors
- Brugada Syndrome
- Complications of Myocardial Infarction
- Coronary Artery Atherosclerosis
- Coronary Artery Vasospasm
- Digitalis Toxicity
- Dissection, Aortic
- Ebstein Anomaly
- Eisenmenger Syndrome
- First-Degree Atrioventricular Block
- HACEK Group Infections (Infective Endocarditis)
- Heart Failure - Decompensatio Cordis
- Holiday Heart Syndrome
- Hypertensive Heart Disease
- Junctional Rhythm
- Loeffler Endocarditis
- Long QT Syndrome
- Lutembacher Syndrome
- Mitral Regurgitation
- Mitral Stenosis
- Mitral Valve Prolapse
- Myocardial Infarction
- Myocardial Rupture
- Paroxysmal Supraventricular Tachycardia
- Patent Ductus Arteriosus
- Patent Foramen Ovale
- Pericardial Effusion
- Pericarditis Acute
- Pericarditis, Constrictive
- Pericarditis, Constrictive-Effusive
- Pulmonic Regurgitation
- Pulmonic Stenosis
- Right Ventricular Infarction
- Saphenous Vein Graft Aneurysms
- Second-Degree Atrioventricular Block
- Sinus of Valsalva Aneurysm
- Sudden Cardiac Death
- Syncope
- Tetralogy of Fallot
- Third-Degree Atrioventricular Block
- Torsade de Pointes
- Tricuspid Regurgitation
- Tricuspid Stenosis
- Unstable Angina
- Ventricular Fibrillation
- Ventricular Septal Defect
- Ventricular Tachycardia
- Wolff-Parkinson-White Syndrome
DISCLAIMER
The content of this Website is not influenced by sponsors. The site is designed primarily for use by qualified physicians and other medical professionals. The information contained herein should NOT be used as a substitute for the advice of an appropriately qualified and licensed physician or other health care provider. The information provided here is for educational and informational purposes only. In no way should it be considered as offering medical advice. Please check with a physician if you suspect you are ill.
0 komentar:
Posting Komentar